Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Biomed Opt Express ; 14(2): 714-738, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36874501

ABSTRACT

PDT-SPACE is an open-source software tool that automates interstitial photodynamic therapy treatment planning by providing patient-specific placement of light sources to destroy a tumor while minimizing healthy tissue damage. This work extends PDT-SPACE in two ways. The first enhancement allows specification of clinical access constraints on light source insertion to avoid penetrating critical structures and to minimize surgical complexity. Constraining fiber access to a single burr hole of adequate size increases healthy tissue damage by 10%. The second enhancement generates an initial placement of light sources as a starting point for refinement, rather than requiring entry of a starting solution by the clinician. This feature improves productivity and also leads to solutions with 4.5% less healthy tissue damage. The two features are used in concert to perform simulations of various surgery options of virtual glioblastoma multiforme brain tumors.

2.
J Biomed Opt ; 27(8)2022 04.
Article in English | MEDLINE | ID: mdl-35380030

ABSTRACT

SIGNIFICANCE: Open-source software packages have been extensively used in the past three decades in medical imaging and diagnostics, aiming to study the feasibility of the application ex vivo. Unfortunately, most of the existing open-source tools require some software engineering background to install the prerequisite libraries, choose a suitable computational platform, and combine several software tools to address different applications. AIM: To facilitate the use of open-source software in medical applications, enabling computational studies of treatment outcomes prior to the complex in-vivo setting. APPROACH: FullMonteWeb, an open-source, user-friendly web-based software with a graphical user interface for interstitial photodynamic therapy (iPDT) modeling, visualization, and optimization, is introduced. The software can perform Monte Carlo simulations of light propagation in biological tissues, along with iPDT plan optimization. FullMonteWeb installs and runs the required software and libraries on Amazon Web Services (AWS), allowing scalable computing without complex set up. RESULTS: FullMonteWeb allows simulation of large and small problems on the most appropriate compute hardware, enabling cost improvements of 10 × versus always running on a single platform. Case studies in optical property estimation and diffuser placement optimization highlight FullMonteWeb's versatility. CONCLUSION: The FullMonte open source suite enables easier and more cost-effective in-silico studies for iPDT.


Subject(s)
Photochemotherapy , Computer Simulation , Monte Carlo Method , Software
3.
Biomed Opt Express ; 12(9): 5401-5422, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692191

ABSTRACT

With the continued development of non-toxic photosensitizer drugs, interstitial photodynamic therapy (iPDT) is showing more favorable outcomes in recent clinical trials. IPDT planning is crucial to further increase the treatment efficacy. However, it remains a major challenge to generate a high-quality, patient-specific plan due to uncertainty in tissue optical properties (OPs), µ a and µ s . These parameters govern how light propagates inside tissues, and any deviation from the planning-assumed values during treatment could significantly affect the treatment outcome. In this work, we increase the robustness of iPDT against OP variations by using machine learning models to recover the patient-specific OPs from light dosimetry measurements and then re-optimizing the diffusers' optical powers to adapt to these OPs in real time. Simulations on virtual brain tumor models show that reoptimizing the power allocation with the recovered OPs significantly reduces uncertainty in the predicted light dosimetry for all tissues involved.

4.
Sci Rep ; 11(1): 17871, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504208

ABSTRACT

Spinal metastases often occur in the advanced stages of breast, lung or prostate cancer, resulting in a significant impact on the patient's quality of life. Current treatment modalities for spinal metastases include both systemic and localized treatments that aim to decrease pain, improve mobility and structural stability, and control tumour growth. With the development of non-toxic photosensitizer drugs, photodynamic therapy (PDT) has shown promise as a minimally invasive non-thermal alternative in oncology, including for spinal metastases. To apply PDT to spinal metastases, predictive algorithms that optimize tumour treatment and minimize the risk of spinal cord damage are needed to assess the feasibility of the treatment and encourage a broad acceptance of PDT in clinical trials. This work presents a framework for PDT modelling and planning, and simulates the feasibility of using a BPD-MA mediated PDT to treat bone metastases at two different wavelengths (690 nm and 565 nm). An open-source software for PDT planning, PDT-SPACE, is used to evaluate different configurations of light diffusers (cut-end and cylindrical) fibres with optimized power allocation in order to minimize the damage to spinal cord or maximize tumour destruction. The work is simulated on three CT images of metastatically involved vertebrae acquired from three patients with spinal metastases secondary to colorectal or lung cancer. Simulation results show that PDT at a 565 nm wavelength has the ability to treat 90% of the metastatic lesion with less than 17% damage to the spinal cord. However, the energy required, and hence treatment time, to achieve this outcome with the 565 nm is infeasible. The energy required and treatment time for the longer wavelength of 690 nm is feasible ([Formula: see text] min), but treatment aimed at 90% of the metastatic lesion would severely damage the proximal spinal cord. PDT-SPACE provides a simulation platform that can be used to optimize PDT delivery in the metastatic spine. While this work serves as a prospective methodology to analyze the feasibility of PDT for tumour ablation in the spine, preclinical studies in an animal model are ongoing to elucidate the spinal cord damage extent as a function of PDT dose, and the resulting short and long term functional impairments. These will be required before there can be any consideration of clinical trials.


Subject(s)
Neoplasm Metastasis/pathology , Photochemotherapy , Photosensitizing Agents/therapeutic use , Spinal Neoplasms/therapy , Humans , Photochemotherapy/methods , Prospective Studies , Quality of Life , Spinal Neoplasms/secondary , Spine/pathology , Verteporfin/therapeutic use
5.
J Biophotonics ; 14(10): e202100135, 2021 10.
Article in English | MEDLINE | ID: mdl-34189862

ABSTRACT

The study presented a Monte Carlo simulation of light transport in eight commonly used filtered facepiece respirators (FFRs) to assess the efficacy of UV at 254 nm for the inactivation of SARS-CoV-2. The results showed different fluence rates across the thickness of the eight different FFRs, implying that some FFR models may be more treatable than others, with the following order being (from most to least treatable): models 1512, 9105s, 1805, 9210, 1870+, 8210, 8110s and 1860, for single side illumination. The model predictions did not coincide well with some previously reported experimental data on virus inactivation when applied to FFR surfaces. The simulations predicted that FFRs should experience higher log reductions (>>6-log) than those observed experimentally (often limited to ~5-log). Possible explanations are virus shielding by aggregation or soiling, and a lack of the Monte Carlo simulations considering near-field scattering effects that can create small, localized regions of low UV photon probability on the surface of the fiber material. If the latter is the main cause in limiting practical UV viral decontamination, improvement might be achieved by exposing the FFR to UV isotropically from all directions, such as by varying the UV source to the FFR surface angle during treatment.


Subject(s)
COVID-19 , N95 Respirators , Humans , SARS-CoV-2
6.
Photodiagnosis Photodyn Ther ; 35: 102353, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34048969

ABSTRACT

BACKGROUND: Isolated lung metastases in sarcoma and colorectal cancer patients are inadequately treated with current standard therapies. In Vivo Lung Perfusion, a novel platform, could overcome limitations to photodynamic therapy treatment volumes by using low cellular perfusate, removing blood, theoretically allowing greater light penetration. To develop personalized photodynamic therapy protocols requires in silico light propagation simulations based on optical properties and maximal permissible photodynamic threshold dose of lung tissue. This study presents quantification of optical properties for two perfusates and the photodynamic threshold for 5-ALA and Chlorin e6. METHODS: Porcine and human lungs were placed on Ex Vivo Lung Perfusion, and perfused with acellular solution or blood. Isotropic diffusers were placed within bronchi and on lung surface for light transmission measurements, from which absorption and light scattering properties were calculated at multiple wavelengths. Separately, pigs were injected with 5-ALA or Chlorin e6, and lung tissue was irradiated at increasing doses. Resultant lesion sizes were measured by CT and histology to quantify the photodynamic threshold. RESULTS: Low cellular perfusate reduced the tissue absorption coefficient significantly, increasing penetration depth of light by 3.3 mm and treatment volumes 3-fold. The photodynamic threshold for lung exposed to 5-ALA was consistent with other malignancies. Chlorin e6 levels were undetectable in lung tissue and did not demonstrate photodynamic-induced necrosis. CONCLUSIONS: Light penetration with low cellular perfusate is significantly greater and could enable treatments for diffuse disease. This data aids photodynamic treatment planning and will guide clinical translation of photodynamic therapy protocols in the lung, especially during lung perfusion.


Subject(s)
Photochemotherapy , Porphyrins , Animals , Humans , Lung/diagnostic imaging , Perfusion , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Swine
7.
IEEE Trans Biomed Eng ; 68(5): 1668-1679, 2021 05.
Article in English | MEDLINE | ID: mdl-33471748

ABSTRACT

Interstitial photodynamic therapy (iPDT) has shown promising results recently as a minimally invasive stand-alone or intra-operative cancer treatment. The development of non-toxic photosensitizing drugs with improved target selectivity has increased its efficacy. However, personalized treatment planning that determines the number of photon emitters, their positions and their input powers while taking into account tissue anatomy and treatment response is still lacking to further improve outcomes. OBJECTIVE: To develop new algorithms that generate high-quality plans by optimizing over the light source positions, along with their powers, to minimize the damage to organs-at-risk while eradicating the tumor. The optimization algorithms should also accurately model the physics of light propagation through the use of Monte-Carlo simulators. METHODS: We use simulated-annealing as a baseline algorithm to place the sources. We propose different source perturbations that are likely to provide better outcomes and study their impact. To minimize the number of moves attempted (and effectively runtime) without degrading result quality, we use a reinforcement learning-based method to decide which perturbation strategy to perform in each iteration. We simulate our algorithm on virtual brain tumors modeling real glioblastoma multiforme cases, assuming a 5-ALA PpIX induced photosensitizer that is activated at [Formula: see text] wavelength. RESULTS: The algorithm generates plans that achieve an average of 46% less damage to organs-as-risk compared to the manual placement used in current clinical studies. SIGNIFICANCE: Having a general and high-quality planning system makes iPDT more effective and applicable to a wider variety of oncological indications. This paves the way for more clinical trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Photochemotherapy , Algorithms , Aminolevulinic Acid/therapeutic use , Brain Neoplasms/drug therapy , Humans , Photosensitizing Agents/therapeutic use , Radiotherapy Planning, Computer-Assisted
8.
J Biophotonics ; 13(12): e202000232, 2020 12.
Article in English | MEDLINE | ID: mdl-32888380

ABSTRACT

This study presents numerical simulations of UVC light propagation through seven different filtered face respirators (FFR) to determine their suitability for Ultraviolet germicidal inactivation (UVGI). UV propagation was modeled using the FullMonte program for two external light illuminations. The optical properties of the dominant three layers were determined using the inverse adding doubling method. The resulting fluence rate volume histograms and the lowest fluence rate recorded in the modeled volume, sometimes in the nW cm-2 , provide feedback on a respirator's suitability for UVGI and the required exposure time for a given light source. While UVGI can present an economical approach to extend an FFR's useable lifetime, it requires careful optimization of the illumination setup and selection of appropriate respirators.


Subject(s)
COVID-19 , Equipment Reuse , Decontamination , Disinfection , Humans , Ultraviolet Rays , Ventilators, Mechanical
9.
J Biomed Opt ; 25(6): 1-13, 2020 06.
Article in English | MEDLINE | ID: mdl-32529817

ABSTRACT

SIGNIFICANCE: Photodynamic therapy (PDT) could become a treatment option for nonmuscle invasive bladder cancer when the current high morbidity rate associated with red light PDT and variable PDT dose can be overcome through a combination of intravesical instillation of the photosensitizer and the use of green light creating a steep PDT dose gradient. AIM: To determine how a high PDT selectivity can be maintained throughout the bladder wall considering other efficacy determining parameters, in particular, the average optical properties of the mucosal layer governing the fluence rate multiplication factor, as well as the bladder shape and the position of the emitter in relationship to the bladder wall. APPROACH: We present three irradiance monitoring systems and evaluate their ability to enable selective bladder PDT considering previously determined photodynamic threshold values for the bladder cancer, mucosa and urothelium in a preclinical model, and the photosensitizer's specific uptake ratio. Monte Carlo-based light propagation simulations performed for six human bladders at the time of therapy for a range of tissue optical properties. The performance of one irradiance sensing device in a clinical phase 1B trial is presented to underline the impact of irradiance monitoring, and it is compared to the Monte Carlo-derived dose surface histogram. RESULTS: Monte Carlo simulations showed that irradiance monitoring systems need to comprise at least three sensors. Light scattering inside the bladder void needs to be minimized to prevent increased heterogeneity of the irradiance. The dose surface histograms vary significantly depending on the bladder shape and bladder volume but are less dependent on tissue optical properties. CONCLUSIONS: We demonstrate the need for adequate irradiance monitoring independent of a photosensitizer's specific uptake ratio.


Subject(s)
Photochemotherapy , Urinary Bladder Neoplasms , Humans , Monte Carlo Method , Photosensitizing Agents/therapeutic use , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/drug therapy
11.
Biomed Opt Express ; 10(9): 4711-4726, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31565520

ABSTRACT

Optimizing light delivery for photodynamic therapy, quantifying tissue optical properties or reconstructing 3D distributions of sources in bioluminescence imaging and absorbers in diffuse optical imaging all involve solving an inverse problem. This can require thousands of forward light propagation simulations to determine the parameters to optimize treatment, image tissue or quantify tissue optical properties, which is time-consuming and computationally expensive. Addressing this problem requires a light propagation simulator that produces results quickly given modelling parameters. In previous work, we developed FullMonteSW: currently the fastest, tetrahedral-mesh, Monte Carlo light propagation simulator written in software. Additional software optimizations showed diminishing performance improvements, so we investigated hardware acceleration methods. This work focuses on FullMonteCUDA: a GPU-accelerated version of FullMonteSW which targets NVIDIA GPUs. FullMonteCUDA has been validated across several benchmark models and, through various GPU-specific optimizations, achieves a 288-936x speedup over the single-threaded, non-vectorized version of FullMonteSW and a 4-13x speedup over the highly optimized, hand-vectorized and multi-threaded version. The increase in performance allows inverse problems to be solved more efficiently and effectively.

12.
J Biophotonics ; 12(1): e201800153, 2019 01.
Article in English | MEDLINE | ID: mdl-30178604

ABSTRACT

Interstitial photodynamic therapy (iPDT) has shown promise recently as a minimally invasive cancer treatment, partially due to the development of non-toxic photosensitizers in the absence of activation light. However, a major challenge in iPDT is the pre-treatment planning process that specifies the number of diffusers needed, along with their positions and allocated powers, to confine the light distribution to the target volume as much as possible. In this work, a new power allocation algorithm for cylindrical light diffusers including those that can produce customized longitudinal (tailored) emission profiles is introduced. The proposed formulation is convex to guarantee the minimum over-dose possible on the surrounding organs-at-risk. The impact of varying the diffuser lengths and penetration angles on the quality of the plan is evaluated. The results of this study are demonstrated for different photosensitizers activated at different wavelengths and simulated on virtual tumors modeling virtual glioblastoma multiforme cases. Results show that manufacturable cylindrical diffusers with tailored emission profiles can significantly outperform those with conventional flat profiles with an average damage reduction on white matter of 15% to 55% and on gray matter of 23% to 58%.


Subject(s)
Photochemotherapy/instrumentation , Diffusion , Equipment Design , Optical Phenomena , Radiometry
13.
J Biomed Opt ; 23(8): 1-11, 2018 08.
Article in English | MEDLINE | ID: mdl-30098135

ABSTRACT

We introduce the FullMonte tetrahedral 3-D Monte Carlo (MC) software package for simulation, visualization, and analysis of light propagation in heterogeneous turbid media including tissue. It provides the highest computational performance and richest set of input, output, and analysis facilities of any open-source tetrahedral-mesh MC light simulator. It also provides a robust framework for statistical verification. A scripting interface makes set-up of simulation runs simple, including parameter sweeps, while simultaneously providing customization options. Data formats shared with class-leading visualization tools, VTK and Paraview, facilitate interactive generation of publication-quality fluence and irradiance maps. The simulator can read and write file formats supported by other similar simulators, such as TIM-OS, MMC, COMSOL (finite-element simulations), and MCML to support comparison. Where simulator features permit, FullMonte can take a single test case, run it in multiple software packages, and load the results together for comparison. Example meshes, optical properties, set-up scripts, and output files are provided for user convenience. We demonstrate its use in several test cases, including photodynamic therapy of the brain, bioluminescence imaging (BLI) in a mouse phantom, and a comparison against MCML for layered geometries. Application domains that can benefit from use of FullMonte include photodynamic, photothermal, and photobiomodulation therapies, BLI, diffuse optical tomography, MC software development, and biophotonics education. Since MC results may be used for preclinical or even clinical experiments, a robust and rigorous verification process is essential. Being a stochastic numerical method, MC simulation has unique challenges associated with verification of output results since observed differences may be due simply to output variance or actual differences in expected output. We describe and have implemented a rigorous and statistically justified framework for comparing between simulators of the same class and for performing regression testing.


Subject(s)
Computer Simulation , Monte Carlo Method , Software , Tomography, Optical/methods , Animals , Brain/diagnostic imaging , Humans , Mice , Models, Biological , Phantoms, Imaging , Photochemotherapy
14.
Biomed Opt Express ; 9(2): 898-920, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29552420

ABSTRACT

Finding a high-quality treatment plan is an essential, yet difficult, stage of Photodynamic therapy (PDT) as it will determine the therapeutic efficacy in eradicating malignant tumors. A high-quality plan is patient-specific, and provides clinicians with the number of fiber-based spherical diffusers, their powers, and their interstitial locations to deliver the required light dose to destroy the tumor while minimizing the damage to surrounding healthy tissues. In this work, we propose a general convex light source power allocation algorithm that, given light source locations, guarantees optimality of the resulting solution in minimizing the over/under-dosage of volumes of interest. Furthermore, we provide an efficient framework for source selection with concomitant power reallocation to achieve treatment plans with a clinically feasible number of sources and comparable quality. We demonstrate our algorithms on virtual test cases that model glioblastoma multiforme tumors, and evaluate the performance of four different photosensitizers with different activation wavelengths and specific tissue uptake ratios. Results show an average reduction of the damage to organs-at-risk (OAR) by 29% to 31% with comparable runtime to existing power allocation techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...